document.write( "Question 945600: find the derivative of the following function using the limt defintion
\n" );
document.write( "((x-1)^2)/(x)
\n" );
document.write( "I can know the answer is 2.(x-1)/(x) but I keep getting it wrong when using the defintion. could you show me step-by-step how to get that final answer? \n" );
document.write( "
Algebra.Com's Answer #576787 by Alan3354(69443)![]() ![]() You can put this solution on YOUR website! find the derivative of the following function using the limt defintion \n" ); document.write( "((x-1)^2)/(x) \n" ); document.write( "------------- \n" ); document.write( "= (x^2 - 2x + 1)/x \n" ); document.write( "= x - 2 + (1/x) \n" ); document.write( "-------------- \n" ); document.write( "You can probably do the x term --> 1 \n" ); document.write( "The -2 --> 0 \n" ); document.write( "--- \n" ); document.write( "That leaves 1/x \n" ); document.write( "--- \n" ); document.write( "(1/(x+h) - 1/x)/h = (x - (x+h))/(h*(x^2 + hx)) \n" ); document.write( "= -h/(h*(x^2 + hx)) \n" ); document.write( "= -1/(x^2 + hx) \n" ); document.write( "Lim = -1/x^2 \n" ); document.write( "===================== \n" ); document.write( "--> 1 - (1/x^2) \n" ); document.write( "or (x^2 - 1)/x^2 \n" ); document.write( " |