document.write( "Question 80314: Two cars leave at noon from the same point, one traveling east at 50 mph, the other traveling due north at 60 mph.
\n" ); document.write( "(a) How far apart are they at 1 PM? at 1:30 PM?
\n" ); document.write( "(b) If t is the number of hours after noon, find an equation expressing the distance between the cars as a function of t.
\n" ); document.write( "

Algebra.Com's Answer #57635 by checkley75(3666)\"\" \"About 
You can put this solution on YOUR website!
(50T)^2+(60T)^2=DISTANCE ^2
\n" ); document.write( "@ 1:00 THEY ARE
\n" ); document.write( "(50*1)^2+(60*1)^2=D^2
\n" ); document.write( "5062=60^2=D62
\n" ); document.write( "2500+3600=D^2
\n" ); document.write( "D^2=5100
\n" ); document.write( "D=SQRT5100
\n" ); document.write( "D=71.414 MILES APART @ 1:00.
\n" ); document.write( "------------------------------------
\n" ); document.write( "@ 1:30 THEY WILL BE:
\n" ); document.write( "(50*1.5)^2+(60*1.5)^2=D^2
\n" ); document.write( "75^2+90^2=D^2
\n" ); document.write( "D^2=5625+8100
\n" ); document.write( "D^2=13725
\n" ); document.write( "D=117.154 MILES APART @ 1:30.
\n" ); document.write( "------------------------------------------------------------
\n" ); document.write( "FORMULA IN TERMS OF T IS:
\n" ); document.write( "(S1T)^2+(S2T)^2=D^2
\n" ); document.write( "T^2(S1^2+S2^2)=D^2
\n" ); document.write( "T^2=D^2/(S1^2+S2^2)
\n" ); document.write( "T=(D/SQRT(S1^2+S2^2)
\n" ); document.write( "
\n" ); document.write( "
\n" );