document.write( "Question 936512: What are the coordinates of the center, the lengths of the major and minor axes, vertices, co-vertices, and foci for each ellipse:\r
\n" );
document.write( "\n" );
document.write( "x^2/9 + y^2/16 =1\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #569983 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! What are the coordinates of the center, the lengths of the major and minor axes, vertices, co-vertices, and foci for each ellipse: \n" ); document.write( "x^2/9 + y^2/16 =1 \n" ); document.write( "Given ellipse has a vertical major axis: \n" ); document.write( "Its standard form of equation: \n" ); document.write( ".. \n" ); document.write( "For given ellipse: \n" ); document.write( "center:(0,0) \n" ); document.write( "a^2=16 \n" ); document.write( "a=4 \n" ); document.write( "length of major axis=2a=8 \n" ); document.write( "b^2=9 \n" ); document.write( "b=3 \n" ); document.write( "length of minor axis=2b=6 \n" ); document.write( "vertices:(0,0±a)=(0,0±4)=(0,-4) and (0,4) \n" ); document.write( "co-vertices:(0±b,0)=(0±3,0)=(-3,0) and (3,0) \n" ); document.write( "foci: \n" ); document.write( "c^2=a^2-b^2=16-9=7 \n" ); document.write( "c=√7≈2.6 \n" ); document.write( "foci:(0,0±c)=(0,0±2.6)=(0,-2.6) and (0,2.6) \n" ); document.write( " \n" ); document.write( " |