document.write( "Question 936231: log base 9 of 6=a, log base 27 of 18=b. Express b in terms of a. \n" ); document.write( "
Algebra.Com's Answer #569872 by Theo(13342)\"\" \"About 
You can put this solution on YOUR website!
log(9,6) = a
\n" ); document.write( "log(27,18) = b
\n" ); document.write( "you want to express b in terms of a.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "log(9,6) = a if and only if 9^a = 6
\n" ); document.write( "log(27,18) = b if and only if 27^b = 18\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since 9 = 3^2, then 9^a can be expressed as (3^2)^a which becomes 3^(2a) and you get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "9^a = 6 becomes 3^(2a) = 6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since 27 = 3^3, then 27^b can be expressed as (3^3)^b which becomes 3^(3b) and you get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "27^b = 18 becomes 3^(3b) = 18\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "if you divide both sides of this equation by 3, you will get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3^(3b) / 3 = 6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "simplify to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3^(3b-1) = 6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "you now have:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3^(2a) = 6 and 3^(3b-1) = 6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "this can only be true if 2a = 3b-1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "solve for b and you get b = (2a+1) / 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );