document.write( "Question 935859: p ↔ (p v q )
\n" );
document.write( "prove:q → p \n" );
document.write( "
Algebra.Com's Answer #569293 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "I'm sure your teacher didn't mean to use truth tables.\r\n" ); document.write( "\r\n" ); document.write( "1. p ↔ (p v q )\r\n" ); document.write( " prove:q → p\r\n" ); document.write( "\r\n" ); document.write( "2. (p v q) → p 1,BE biconditional simplification, elimination\r\n" ); document.write( "\r\n" ); document.write( "3. ~p → ~(p v q) 2,MT modus tollens\r\n" ); document.write( "\r\n" ); document.write( "4. ~p → (~p & ~q) 3,DM DeMorgan's law \r\n" ); document.write( "\r\n" ); document.write( "5. ~p → ~q 4,CS conjunctive simplification\r\n" ); document.write( "\r\n" ); document.write( "6. ~~q → ~~p 5,MT modus tollens\r\n" ); document.write( "\r\n" ); document.write( "7. q → p 6,DN double negation \r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |