document.write( "Question 79171: The units digit of a two digit number is 1 less than 3 times the tens digit. If the digits are reversed, the new number is 45 more than the original number. Find the number. \n" ); document.write( "
Algebra.Com's Answer #56825 by checkley75(3666)\"\" \"About 
You can put this solution on YOUR website!
let 10x+y be the 2 digit number. then: y=(3x-1)
\n" ); document.write( "10y+x=(10x+y)+45
\n" ); document.write( "now substituting (3x-1) for y in this equation we get
\n" ); document.write( "10(3x-1)+x=10x+(3x-1)+45
\n" ); document.write( "30x-10+x=10x+3x-1+45
\n" ); document.write( "30x+x-10x-3x=-1+45+10
\n" ); document.write( "18x=54
\n" ); document.write( "x=54/18
\n" ); document.write( "x=3 answer
\n" ); document.write( "y=3*3-1
\n" ); document.write( "y=9-1
\n" ); document.write( "y=8 answer. therefore the two numbers are:
\n" ); document.write( "38 & 83
\n" ); document.write( "the difference is
\n" ); document.write( "83-38=45
\n" ); document.write( "45=45
\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );