document.write( "Question 925883: 8c^2 + 38c + 35 factor \n" ); document.write( "
Algebra.Com's Answer #561897 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"8c%5E2%2B38c%2B35\", we can see that the first coefficient is \"8\", the second coefficient is \"38\", and the last term is \"35\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"8\" by the last term \"35\" to get \"%288%29%2835%29=280\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"280\" (the previous product) and add to the second coefficient \"38\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"280\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"280\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,5,7,8,10,14,20,28,35,40,56,70,140,280\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-5,-7,-8,-10,-14,-20,-28,-35,-40,-56,-70,-140,-280\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"280\".\r
\n" ); document.write( "\n" ); document.write( "1*280 = 280
\n" ); document.write( "2*140 = 280
\n" ); document.write( "4*70 = 280
\n" ); document.write( "5*56 = 280
\n" ); document.write( "7*40 = 280
\n" ); document.write( "8*35 = 280
\n" ); document.write( "10*28 = 280
\n" ); document.write( "14*20 = 280
\n" ); document.write( "(-1)*(-280) = 280
\n" ); document.write( "(-2)*(-140) = 280
\n" ); document.write( "(-4)*(-70) = 280
\n" ); document.write( "(-5)*(-56) = 280
\n" ); document.write( "(-7)*(-40) = 280
\n" ); document.write( "(-8)*(-35) = 280
\n" ); document.write( "(-10)*(-28) = 280
\n" ); document.write( "(-14)*(-20) = 280\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"38\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
12801+280=281
21402+140=142
4704+70=74
5565+56=61
7407+40=47
8358+35=43
102810+28=38
142014+20=34
-1-280-1+(-280)=-281
-2-140-2+(-140)=-142
-4-70-4+(-70)=-74
-5-56-5+(-56)=-61
-7-40-7+(-40)=-47
-8-35-8+(-35)=-43
-10-28-10+(-28)=-38
-14-20-14+(-20)=-34
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"10\" and \"28\" add to \"38\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"10\" and \"28\" both multiply to \"280\" and add to \"38\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"38c\" with \"10c%2B28c\". Remember, \"10\" and \"28\" add to \"38\". So this shows us that \"10c%2B28c=38c\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"8c%5E2%2Bhighlight%2810c%2B28c%29%2B35\" Replace the second term \"38c\" with \"10c%2B28c\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%288c%5E2%2B10c%29%2B%2828c%2B35%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2c%284c%2B5%29%2B%2828c%2B35%29\" Factor out the GCF \"2c\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2c%284c%2B5%29%2B7%284c%2B5%29\" Factor out \"7\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282c%2B7%29%284c%2B5%29\" Combine like terms. Or factor out the common term \"4c%2B5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"8c%5E2%2B38c%2B35\" factors to \"%282c%2B7%29%284c%2B5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"8c%5E2%2B38c%2B35=%282c%2B7%29%284c%2B5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282c%2B7%29%284c%2B5%29\" to get \"8c%5E2%2B38c%2B35\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );