document.write( "Question 925688: A normal population has a mean of 55 and a standard deviation of 13. You select a random sample of 25.\r
\n" );
document.write( "\n" );
document.write( "Compute the probability the sample mean is: (Round z values to 2 decimal places and final answers to 4 decimal places.)\r
\n" );
document.write( "\n" );
document.write( "(a) Greater than 59.\r
\n" );
document.write( "\n" );
document.write( " Probability = \r
\n" );
document.write( "\n" );
document.write( "(b) Less than 51.\r
\n" );
document.write( "\n" );
document.write( " Probability = \r
\n" );
document.write( "\n" );
document.write( "(c) Between 51 and 59.\r
\n" );
document.write( "\n" );
document.write( " Probability =
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #561683 by ewatrrr(24785)![]() ![]() You can put this solution on YOUR website! mean = 55, SD = 13 , n = 25 z = \n" ); document.write( "... \n" ); document.write( "Using the z-value to determine the Probability: \n" ); document.write( "P(x > 59) = P(z > 4/2.6) = P(z > 1.54) = 1 - P(z < 1.54) = .0618 \n" ); document.write( " Using a TI calculator 0r similarly a Casio fx-115 ES plus \n" ); document.write( "P(z > 1.54) = normalcdf(1.54,100) = .0618 \n" ); document.write( "............. \n" ); document.write( "P(x < 51) = P( z < -4/2.6) = P( z < -1.54) = normalcdf(-100, 1.54) = .0618 \n" ); document.write( "...... \n" ); document.write( "P(51 < x < 59) = P( -1.54 < z < 1.54) = 1 - .0618 - .0618 = .8764 \n" ); document.write( "Or \n" ); document.write( " Using a TI calculator 0r similarly a Casio fx-115 ES plus \n" ); document.write( "P( -1.54 < z < 1.54) = normalcdf(-1.54, 1.54)= .8764 \n" ); document.write( " |