document.write( "Question 924795: Using the exact values of the sine and the cosine of 1/6 pie and 3/4 pie and one of the sum and difference formulas. show sin(7/12 pie)is 1/4(sqrt2 + sprt6)?\r
\n" ); document.write( "\n" ); document.write( "i can work out the sin(7/12pie)=sin(1/4pie+1/3pie)=sin(1/4pie)cos(1/3pie)+cos(1/4pie)sin(1/3pie)=1/2sprt2*1/2+1/2sprt2*1/2sprt3=1/4(sprt2+sprt6)\r
\n" ); document.write( "\n" ); document.write( "i do not understand using the exact values of sin and cosin of 1/6 pie and 3/4pie????
\n" ); document.write( "

Algebra.Com's Answer #561088 by ewatrrr(24785)\"\" \"About 
You can put this solution on YOUR website!
 
\n" ); document.write( "Hi
\n" ); document.write( "sin( 7π/12) = (1/4)(√2 + √6) is the exact value representation of sin( 7π/12)
\n" ); document.write( "that allows one to express sin( 7π/12) in terms of simple square roots rather
\n" ); document.write( "than in using a decimal representation derived from a calculator.
\n" ); document.write( "...
\n" ); document.write( "Although calculators use irrational numbers such as π, √2 ,√3 etc...
\n" ); document.write( "the decimal calculations are never 'exact' (...best we can do is a 'rounded off' representation)
\n" ); document.write( "...........
\n" ); document.write( "θ radians sin θ cos θ tan θ
\n" ); document.write( "0° 0 0 1 0
\n" ); document.write( "30° π/6 1/2 √3/2 √3/3
\n" ); document.write( "45° π/4 √2/2 √2/2 1
\n" ); document.write( "60° π/3 √3/2 1/2 √3
\n" ); document.write( "90° π/2 1 0 ─
\n" ); document.write( " \n" ); document.write( "
\n" );