document.write( "Question 921773: 2 legs of a right triangle are in the ratio of 5:6. The hypotenuse is 61. If the longer leg is doubled amd the shorter leg does not change, what is the length of the hypotenuse ? \n" ); document.write( "
Algebra.Com's Answer #559191 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
2 legs of a right triangle are in the ratio of 5:6. The hypotenuse is 61. If the longer leg is doubled amd the shorter leg does not change, what is the length of the hypotenuse ?
\n" ); document.write( "-----
\n" ); document.write( "5:6 is the same sa 5x:6x
\n" ); document.write( "----
\n" ); document.write( "(5x)^2 + (6x)^2 = 61^2
\n" ); document.write( "25x^2 + 36x^2 = 61^2
\n" ); document.write( "61x^2 = 61^2
\n" ); document.write( "x = 1
\n" ); document.write( "--------------
\n" ); document.write( "shorter leg = 5
\n" ); document.write( "longer leg = 6
\n" ); document.write( "----
\n" ); document.write( "New dimensions:
\n" ); document.write( "loger leg = 12
\n" ); document.write( "shorter leg = 5
\n" ); document.write( "---
\n" ); document.write( "Equation:
\n" ); document.write( "h^2 = 5^2 + 12^2
\n" ); document.write( "h^2 = 169
\n" ); document.write( "hypotenuse = 13
\n" ); document.write( "==============
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" );