document.write( "Question 921773: 2 legs of a right triangle are in the ratio of 5:6. The hypotenuse is 61. If the longer leg is doubled amd the shorter leg does not change, what is the length of the hypotenuse ? \n" ); document.write( "
Algebra.Com's Answer #559191 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! 2 legs of a right triangle are in the ratio of 5:6. The hypotenuse is 61. If the longer leg is doubled amd the shorter leg does not change, what is the length of the hypotenuse ? \n" ); document.write( "----- \n" ); document.write( "5:6 is the same sa 5x:6x \n" ); document.write( "---- \n" ); document.write( "(5x)^2 + (6x)^2 = 61^2 \n" ); document.write( "25x^2 + 36x^2 = 61^2 \n" ); document.write( "61x^2 = 61^2 \n" ); document.write( "x = 1 \n" ); document.write( "-------------- \n" ); document.write( "shorter leg = 5 \n" ); document.write( "longer leg = 6 \n" ); document.write( "---- \n" ); document.write( "New dimensions: \n" ); document.write( "loger leg = 12 \n" ); document.write( "shorter leg = 5 \n" ); document.write( "--- \n" ); document.write( "Equation: \n" ); document.write( "h^2 = 5^2 + 12^2 \n" ); document.write( "h^2 = 169 \n" ); document.write( "hypotenuse = 13 \n" ); document.write( "============== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |