document.write( "Question 921368: 1. Write cot(t) in terms of sin(t) if the terminal point determined by t is in the first quadrant. Do not leave a fraction inside a radical or use absolute value.\r
\n" ); document.write( "\n" ); document.write( "cot (t) =
\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "2. Write cot(t) in terms of sec(t) if the terminal point determined by t is in the second quadrant.\r
\n" ); document.write( "\n" ); document.write( "cot (t) = \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "please help
\n" ); document.write( "thank you
\n" ); document.write( "

Algebra.Com's Answer #558990 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
1. Write cot(t) in terms of sin(t) if the terminal point determined by t is in the first quadrant. Do not leave a fraction inside a radical or use absolute value.
\n" ); document.write( " cot (t) = cos(t)/sin(t) = sqrt(1-sin^2(t))/sin(t)
\n" ); document.write( "-------------------------------- \r
\n" ); document.write( "\n" ); document.write( "2. Write cot(t) in terms of sec(t) if the terminal point determined by t is in the second quadrant.
\n" ); document.write( " cot (t) = cos(t)/sin(t) = (1/sec)/sqrt(1-(1/sec)^2))
\n" ); document.write( "= (1/sec)/sqrt[sec^2-1)/sec^2]
\n" ); document.write( "= 1/sqrt[sec^2(t)-1]
\n" ); document.write( "--
\n" ); document.write( "OR
\n" ); document.write( "tan^2 = sec^2-1
\n" ); document.write( "So cot^2 = 1/(sec^2-1)
\n" ); document.write( "Therefore cot(t) = 1/sqrt(sec^2-1)
\n" ); document.write( "==========================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "==============
\n" ); document.write( "
\n" );