document.write( "Question 921368: 1. Write cot(t) in terms of sin(t) if the terminal point determined by t is in the first quadrant. Do not leave a fraction inside a radical or use absolute value.\r
\n" );
document.write( "\n" );
document.write( "cot (t) =
\n" );
document.write( " \r
\n" );
document.write( "\n" );
document.write( "2. Write cot(t) in terms of sec(t) if the terminal point determined by t is in the second quadrant.\r
\n" );
document.write( "\n" );
document.write( "cot (t) = \r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "please help
\n" );
document.write( "thank you \n" );
document.write( "
Algebra.Com's Answer #558990 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! 1. Write cot(t) in terms of sin(t) if the terminal point determined by t is in the first quadrant. Do not leave a fraction inside a radical or use absolute value. \n" ); document.write( " cot (t) = cos(t)/sin(t) = sqrt(1-sin^2(t))/sin(t) \n" ); document.write( "-------------------------------- \r \n" ); document.write( "\n" ); document.write( "2. Write cot(t) in terms of sec(t) if the terminal point determined by t is in the second quadrant. \n" ); document.write( " cot (t) = cos(t)/sin(t) = (1/sec)/sqrt(1-(1/sec)^2)) \n" ); document.write( "= (1/sec)/sqrt[sec^2-1)/sec^2] \n" ); document.write( "= 1/sqrt[sec^2(t)-1] \n" ); document.write( "-- \n" ); document.write( "OR \n" ); document.write( "tan^2 = sec^2-1 \n" ); document.write( "So cot^2 = 1/(sec^2-1) \n" ); document.write( "Therefore cot(t) = 1/sqrt(sec^2-1) \n" ); document.write( "========================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "============== \n" ); document.write( " |