document.write( "Question 77972: c..ex...\r
\n" ); document.write( "\n" ); document.write( "Problem #22
\n" ); document.write( "Solve
\n" ); document.write( "-9(x-3)^2 = -7\r
\n" ); document.write( "\n" ); document.write( "Problem #33
\n" ); document.write( "Solve by completeing the square
\n" ); document.write( "2x^2-4x-11=0
\n" ); document.write( "

Algebra.Com's Answer #55867 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
#22
\n" ); document.write( "\"-9%28x-3%29%5E2+=+-7\"\r
\n" ); document.write( "\n" ); document.write( "\"%28x-3%29%5E2+=+7%2F9\" Divide both sides by -9\r
\n" ); document.write( "\n" ); document.write( "\"x-3+=0%2B-+sqrt%287%2F9%29\" Take the square root of both sides\r
\n" ); document.write( "\n" ); document.write( "\"x-3+=0%2B-+sqrt%287%29%2F3\" Reduce the denominator\r
\n" ); document.write( "\n" ); document.write( "\"x+=0%2B-+sqrt%287%29%2F3%2B3\" Add 3 to both sides so our solution is\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "#33\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: Completing the Square to Get a Quadratic into Vertex Form

\n" ); document.write( "
\n" ); document.write( " \"y=2+x%5E2-4+x-11\" Start with the given equation
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B11=2+x%5E2-4+x\" Add \"11\" to both sides
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B11=2%28x%5E2-2x%29\" Factor out the leading coefficient \"2\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Take half of the x coefficient \"-2\" to get \"-1\" (ie \"%281%2F2%29%28-2%29=-1\").
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now square \"-1\" to get \"1\" (ie \"%28-1%29%5E2=%28-1%29%28-1%29=1\")
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B11=2%28x%5E2-2x%2B1-1%29\" Now add and subtract this value inside the parenthesis. Doing both the addition and subtraction of \"1\" does not change the equation
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B11=2%28%28x-1%29%5E2-1%29\" Now factor \"x%5E2-2x%2B1\" to get \"%28x-1%29%5E2\"
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B11=2%28x-1%29%5E2-2%281%29\" Distribute
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y%2B11=2%28x-1%29%5E2-2\" Multiply
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y=2%28x-1%29%5E2-2-11\" Now add \"%2B11\" to both sides to isolate y
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"y=2%28x-1%29%5E2-13\" Combine like terms
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Now the quadratic is in vertex form \"y=a%28x-h%29%5E2%2Bk\" where \"a=2\", \"h=1\", and \"k=-13\". Remember (h,k) is the vertex and \"a\" is the stretch/compression factor.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Check:
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Notice if we graph the original equation \"y=2x%5E2-4x-11\" we get:
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"graph%28500%2C500%2C-10%2C10%2C-10%2C10%2C2x%5E2-4x-11%29\" Graph of \"y=2x%5E2-4x-11\". Notice how the vertex is (\"1\",\"-13\").
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " Notice if we graph the final equation \"y=2%28x-1%29%5E2-13\" we get:
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " \"graph%28500%2C500%2C-10%2C10%2C-10%2C10%2C2%28x-1%29%5E2-13%29\" Graph of \"y=2%28x-1%29%5E2-13\". Notice how the vertex is also (\"1\",\"-13\").
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " So if these two equations were graphed on the same coordinate plane, one would overlap another perfectly. So this visually verifies our answer.
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "

\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So we now have\r
\n" ); document.write( "\n" ); document.write( "\"0=2%28x-1%29%5E2-13\"\r
\n" ); document.write( "\n" ); document.write( "\"13=2%28x-1%29%5E2\" Add 13 to both sides\r
\n" ); document.write( "\n" ); document.write( "\"13%2F2=%28x-1%29%5E2\" Divide both sides by 2\r
\n" ); document.write( "\n" ); document.write( "\"0%2B-sqrt%2813%2F2%29=x-1\" Take the square root of both sides\r
\n" ); document.write( "\n" ); document.write( "\"0%2B-sqrt%2813%2F2%29%2B1=x\" Add 1 to both sides\r
\n" ); document.write( "\n" ); document.write( "So our answer is\r
\n" ); document.write( "\n" ); document.write( "\"x=0%2B-sqrt%2813%2F2%29%2B1\"
\n" ); document.write( "
\n" );