document.write( "Question 77960: A merchant wishes to mix candy worth $5 per lb with 40 lb of candy worth $2 per lb to get a mixture that can be sold for $3 per lb. How many pounds of $5 candy should be used? \n" ); document.write( "
Algebra.Com's Answer #55847 by ptaylor(2198)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Let x= amount of $5 per lb candy
\n" ); document.write( "Then 40-x=amount of $2 per lb candy\r
\n" ); document.write( "\n" ); document.write( "Now we know that the value of $5 candy (5x) plus the value of the $2 candy (2(40-x)) equals the value of the final mixture $3(40). So our equation to solve is:\r
\n" ); document.write( "\n" ); document.write( "5x+2(40-x)=3(40) get rid of parens\r
\n" ); document.write( "\n" ); document.write( "5x+80-2x=120 subtract 80 from both sides\r
\n" ); document.write( "\n" ); document.write( "5x+80-80-2x=120-80 collect like terms\r
\n" ); document.write( "\n" ); document.write( "3x=40 divide both sides by 3\r
\n" ); document.write( "\n" ); document.write( "x=13.3333 lb----------------------------------amount of $5 per lb candy\r
\n" ); document.write( "\n" ); document.write( "40-x=40-13.3333=26.6667 lb----------------------amount of $2 candy\r
\n" ); document.write( "\n" ); document.write( "Check\r
\n" ); document.write( "\n" ); document.write( "13.3333($5)+26.6667($2)=$3(40)\r
\n" ); document.write( "\n" ); document.write( "66.6665+53.3333=120
\n" ); document.write( "~120=120\r
\n" ); document.write( "\n" ); document.write( "Hope this helps----ptaylor\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );