document.write( "Question 919569: in a three-digit number, the hundreds digit is equal to the tens digit and is 2 more than the ones digit. The number formed by reversing the digits is 19 times the sum of the digits. Find the original number \n" ); document.write( "
Algebra.Com's Answer #557807 by JoelSchwartz(130)\"\" \"About 
You can put this solution on YOUR website!
h=hundreds digit
\n" ); document.write( "t=tens digit
\n" ); document.write( "u=ones digit
\n" ); document.write( "h=t
\n" ); document.write( "h=2+u
\n" ); document.write( "19(t+h+u)=100u+10t+h
\n" ); document.write( "19(2+u+2+u+u)=100u+10(2+u)+2+u
\n" ); document.write( "19(3u+4)=100u+20+10u+2+u
\n" ); document.write( "57u+76=111u+22
\n" ); document.write( "54=111u-57u
\n" ); document.write( "54=54u
\n" ); document.write( "u=1
\n" ); document.write( "h=3
\n" ); document.write( "t=3
\n" ); document.write( "19(7)=100+30+3
\n" ); document.write( "133=133
\n" ); document.write( "100h+10t+u
\n" ); document.write( "300+30+1=331
\n" ); document.write( "The original number is 331
\n" ); document.write( "
\n" );