document.write( "Question 918910: Rite-Cut riding lawnmowers obey the demand equation p= -1/20x+1,030. The cost of producing x lawnmowers is given by the function C(x)= 150x+3,000.
\n" );
document.write( "a. Express the revenue R as a function of x. Do not factor answer
\n" );
document.write( "b. Express the profit P as a function of x. Do not factor answer
\n" );
document.write( "c. Find the value of x that maximizes profit. What is the maximum profit?
\n" );
document.write( "d. What price should be charged in order to maximize profit? \n" );
document.write( "
Algebra.Com's Answer #557489 by ewatrrr(24785)![]() ![]() You can put this solution on YOUR website! p= -1/20x+1,030, C(x)= 150x+3,000. \n" ); document.write( "a) R(x) = (-1/20)x + 1,030)x \n" ); document.write( "... \n" ); document.write( "b) P(x) = (-1/20)x + 1,030)x -( 150x+3,000) \n" ); document.write( "P(x) = (-1/20)x^2 + 1,030x -150x-3,000) \n" ); document.write( "P(x) = (-1/20)x^2 + 880x - 3000 \n" ); document.write( "... \n" ); document.write( "c) x = -(880/(-1/10) = 8800, maximizes profit \n" ); document.write( "... \n" ); document.write( "d) p(8800) = (-1/20)8800 + 1030 = $590 \n" ); document.write( " \n" ); document.write( " |