document.write( "Question 918910: Rite-Cut riding lawnmowers obey the demand equation p= -1/20x+1,030. The cost of producing x lawnmowers is given by the function C(x)= 150x+3,000.
\n" ); document.write( "a. Express the revenue R as a function of x. Do not factor answer
\n" ); document.write( "b. Express the profit P as a function of x. Do not factor answer
\n" ); document.write( "c. Find the value of x that maximizes profit. What is the maximum profit?
\n" ); document.write( "d. What price should be charged in order to maximize profit?
\n" ); document.write( "

Algebra.Com's Answer #557489 by ewatrrr(24785)\"\" \"About 
You can put this solution on YOUR website!
p= -1/20x+1,030, C(x)= 150x+3,000.
\n" ); document.write( "a) R(x) = (-1/20)x + 1,030)x
\n" ); document.write( "...
\n" ); document.write( "b) P(x) = (-1/20)x + 1,030)x -( 150x+3,000)
\n" ); document.write( "P(x) = (-1/20)x^2 + 1,030x -150x-3,000)
\n" ); document.write( "P(x) = (-1/20)x^2 + 880x - 3000
\n" ); document.write( "...
\n" ); document.write( "c) x = -(880/(-1/10) = 8800, maximizes profit
\n" ); document.write( "...
\n" ); document.write( "d) p(8800) = (-1/20)8800 + 1030 = $590
\n" ); document.write( "
\n" ); document.write( "
\n" );