document.write( "Question 918944: ind the terminal point P(x, y) on the unit circle determined by the given value of t. t = − 3π/4?
\n" );
document.write( "Find the terminal point P(x, y) on the unit circle determined by the given value of t.
\n" );
document.write( "t = −3π/4 \r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "P(x, y) = (?,?) \n" );
document.write( "
Algebra.Com's Answer #557455 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Find the terminal point P(x, y) on the unit circle determined by the given value of t. t = − 3π/4? \n" ); document.write( "Find the terminal point P(x, y) on the unit circle determined by the given value of t. \n" ); document.write( "t = −3π/4 \n" ); document.write( "P(x, y) = (?,?) \n" ); document.write( "*** \n" ); document.write( "The reference angle of -3π/4 is π/4 in quadrant III where sin<0, cos<0, tan>0 \n" ); document.write( "tan(π/4)=x/y=1 \n" ); document.write( "y=x \n" ); document.write( "In a unit circle: \n" ); document.write( "x^2+y^2=1 \n" ); document.write( "x^2+x^2=1 \n" ); document.write( "2x^2=1 \n" ); document.write( "x^2=1/2 \n" ); document.write( "x=1/√2=-√2/2 \n" ); document.write( "y=-√2/2 \n" ); document.write( "P(x,y)=P(-√2/2,-√2/2) \n" ); document.write( " \n" ); document.write( " |