document.write( "Question 918000: Suppose that the terminal point determined by t is the point (3/5, 4/5) on the unit circle. Find the terminal point determined by each of the following.\r
\n" ); document.write( "\n" ); document.write( "(a)
\n" ); document.write( "π − t
\n" ); document.write( "(x, y) = \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(b)
\n" ); document.write( "-t
\n" ); document.write( "(x, y) = \r
\n" ); document.write( "\n" ); document.write( "(c)
\n" ); document.write( "π + t
\n" ); document.write( "(x, y) = \r
\n" ); document.write( "\n" ); document.write( "(d)
\n" ); document.write( "2π + t
\n" ); document.write( "(x, y) = \r
\n" ); document.write( "\n" ); document.write( "please explain how these are solved. Thanks!
\n" ); document.write( "

Algebra.Com's Answer #556894 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Suppose that the terminal point determined by t is the point (3/5, 4/5) on the unit circle. Find the terminal point determined by each of the following.
\n" ); document.write( "***
\n" ); document.write( "3/5=0.6
\n" ); document.write( "4/5=0.8
\n" ); document.write( "..
\n" ); document.write( "(a)
\n" ); document.write( "π − t(rotate cc π-t which places reference angle t in quadrant II where sin>0, cos<0)
\n" ); document.write( "(x, y) =(-0.6,0.8)\r
\n" ); document.write( "\n" ); document.write( "(b)
\n" ); document.write( "-t(in quadrant IV where cos>0, sin<0)
\n" ); document.write( "(x, y) =(0.6,-0.8)
\n" ); document.write( "(c)
\n" ); document.write( "π + t (rotate cc π+t which places reference angle t in quadrant III where sin<0, cos<0)
\n" ); document.write( "(x, y) =(-0.6,-0.8)
\n" ); document.write( "(d)
\n" ); document.write( "2π + t (rotate cc 2π+t which places reference angle t in quadrant I where sin>0, cos>0)
\n" ); document.write( "(x, y) = (0.6,0.8)
\n" ); document.write( "
\n" );