document.write( "Question 918000: Suppose that the terminal point determined by t is the point (3/5, 4/5) on the unit circle. Find the terminal point determined by each of the following.\r
\n" );
document.write( "\n" );
document.write( "(a)
\n" );
document.write( "π − t
\n" );
document.write( "(x, y) = \r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "(b)
\n" );
document.write( "-t
\n" );
document.write( "(x, y) = \r
\n" );
document.write( "\n" );
document.write( "(c)
\n" );
document.write( "π + t
\n" );
document.write( "(x, y) = \r
\n" );
document.write( "\n" );
document.write( "(d)
\n" );
document.write( "2π + t
\n" );
document.write( "(x, y) = \r
\n" );
document.write( "\n" );
document.write( "please explain how these are solved. Thanks! \n" );
document.write( "
Algebra.Com's Answer #556894 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Suppose that the terminal point determined by t is the point (3/5, 4/5) on the unit circle. Find the terminal point determined by each of the following. \n" ); document.write( "*** \n" ); document.write( "3/5=0.6 \n" ); document.write( "4/5=0.8 \n" ); document.write( ".. \n" ); document.write( "(a) \n" ); document.write( "π − t(rotate cc π-t which places reference angle t in quadrant II where sin>0, cos<0) \n" ); document.write( "(x, y) =(-0.6,0.8)\r \n" ); document.write( "\n" ); document.write( "(b) \n" ); document.write( "-t(in quadrant IV where cos>0, sin<0) \n" ); document.write( "(x, y) =(0.6,-0.8) \n" ); document.write( "(c) \n" ); document.write( "π + t (rotate cc π+t which places reference angle t in quadrant III where sin<0, cos<0) \n" ); document.write( "(x, y) =(-0.6,-0.8) \n" ); document.write( "(d) \n" ); document.write( "2π + t (rotate cc 2π+t which places reference angle t in quadrant I where sin>0, cos>0) \n" ); document.write( "(x, y) = (0.6,0.8) \n" ); document.write( " |