document.write( "Question 916913: How do you find the area for this expression?: Erik has 2000 yards of fencing to enclose a rectangular area. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area? \n" ); document.write( "
Algebra.Com's Answer #556395 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! How do you find the area for this expression?: Erik has 2000 yards of fencing to enclose a rectangular area. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area? \n" ); document.write( "---------------- \n" ); document.write( "Perimeter = 2(length + width) \n" ); document.write( "2000 = 2(length + width) \n" ); document.write( "length + width = 1000 \n" ); document.write( "L = 1000-W \n" ); document.write( "---------------------- \n" ); document.write( "Area = Length*Width \n" ); document.write( "A = (1000-W)*W \n" ); document.write( "---- \n" ); document.write( "Area = 1000W-W^2 \n" ); document.write( "------ \n" ); document.write( "Maximum Area occurs when W = -b/(2a) = -1000(2*-1) = 500 \n" ); document.write( "----- \n" ); document.write( "If Width = 500, Length = 1000 - 500 = 500 \n" ); document.write( "----------------- \n" ); document.write( "Ans: Area = 500^2 = 250000 sq. units \n" ); document.write( "-------------- \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |