document.write( "Question 916913: How do you find the area for this expression?: Erik has 2000 yards of fencing to enclose a rectangular area. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area? \n" ); document.write( "
Algebra.Com's Answer #556395 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
How do you find the area for this expression?: Erik has 2000 yards of fencing to enclose a rectangular area. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area?
\n" ); document.write( "----------------
\n" ); document.write( "Perimeter = 2(length + width)
\n" ); document.write( "2000 = 2(length + width)
\n" ); document.write( "length + width = 1000
\n" ); document.write( "L = 1000-W
\n" ); document.write( "----------------------
\n" ); document.write( "Area = Length*Width
\n" ); document.write( "A = (1000-W)*W
\n" ); document.write( "----
\n" ); document.write( "Area = 1000W-W^2
\n" ); document.write( "------
\n" ); document.write( "Maximum Area occurs when W = -b/(2a) = -1000(2*-1) = 500
\n" ); document.write( "-----
\n" ); document.write( "If Width = 500, Length = 1000 - 500 = 500
\n" ); document.write( "-----------------
\n" ); document.write( "Ans: Area = 500^2 = 250000 sq. units
\n" ); document.write( "--------------
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" );