document.write( "Question 77517: the length of a rectangle is 4 less than twice its width. if the area of the rectangle is 20, find the width of the rectangle to the nearest tenth \n" ); document.write( "
Algebra.Com's Answer #55631 by checkley75(3666)\"\" \"About 
You can put this solution on YOUR website!
L=2W-4 IS THE LENGTH WHILE W=WIDTH
\n" ); document.write( "AREA=W*L
\n" ); document.write( "20=W(2W-4)
\n" ); document.write( "20=2W^2-4W
\n" ); document.write( "2W^2-4W-20=0
\n" ); document.write( "USING THE QUADRATIC EQUATION WE GET
\n" ); document.write( "W=(4+-SQRT[-4^2-4*2*-20])/2*2
\n" ); document.write( "W=(4+-SQRT[16+160])/4
\n" ); document.write( "W=(4+-SQRT176)/4
\n" ); document.write( "W=(4+-13.2665)/4
\n" ); document.write( "W=(4+13.2665)/4
\n" ); document.write( "W=17.2665/4
\n" ); document.write( "W=4.3166 ANSWER FOR THE WIDTH.
\n" ); document.write( "L=2*4.3166-4
\n" ); document.write( "L=8.6312-4
\n" ); document.write( "L=4.6312 ANSWER FOR THE LENGTH.
\n" ); document.write( "PROOF
\n" ); document.write( "4.3166*4.6312=20
\n" ); document.write( "20=20
\n" ); document.write( "
\n" ); document.write( "
\n" );