document.write( "Question 77517: the length of a rectangle is 4 less than twice its width. if the area of the rectangle is 20, find the width of the rectangle to the nearest tenth \n" ); document.write( "
Algebra.Com's Answer #55631 by checkley75(3666)![]() ![]() ![]() You can put this solution on YOUR website! L=2W-4 IS THE LENGTH WHILE W=WIDTH \n" ); document.write( "AREA=W*L \n" ); document.write( "20=W(2W-4) \n" ); document.write( "20=2W^2-4W \n" ); document.write( "2W^2-4W-20=0 \n" ); document.write( "USING THE QUADRATIC EQUATION WE GET \n" ); document.write( "W=(4+-SQRT[-4^2-4*2*-20])/2*2 \n" ); document.write( "W=(4+-SQRT[16+160])/4 \n" ); document.write( "W=(4+-SQRT176)/4 \n" ); document.write( "W=(4+-13.2665)/4 \n" ); document.write( "W=(4+13.2665)/4 \n" ); document.write( "W=17.2665/4 \n" ); document.write( "W=4.3166 ANSWER FOR THE WIDTH. \n" ); document.write( "L=2*4.3166-4 \n" ); document.write( "L=8.6312-4 \n" ); document.write( "L=4.6312 ANSWER FOR THE LENGTH. \n" ); document.write( "PROOF \n" ); document.write( "4.3166*4.6312=20 \n" ); document.write( "20=20 \n" ); document.write( " \n" ); document.write( " |