In order to factor , first we need to ask ourselves: What two numbers multiply to -36 and add to 0? Lets find out by listing all of the possible factors of -36 \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Factors: \n" );
document.write( " \n" );
document.write( " 1,2,3,4,6,9,12,18,36, \n" );
document.write( " \n" );
document.write( " -1,-2,-3,-4,-6,-9,-12,-18,-36,List the negative factors as well. This will allow us to find all possible combinations \n" );
document.write( " \n" );
document.write( " These factors pair up to multiply to -36. \n" );
document.write( " \n" );
document.write( " (-1)*(36)=-36 \n" );
document.write( " \n" );
document.write( " (-2)*(18)=-36 \n" );
document.write( " \n" );
document.write( " (-3)*(12)=-36 \n" );
document.write( " \n" );
document.write( " (-4)*(9)=-36 \n" );
document.write( " \n" );
document.write( " (-6)*(6)=-36 \n" );
document.write( " \n" );
document.write( " Now which of these pairs add to 0? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 0 \n" );
document.write( " \n" );
document.write( " First Number | | | Second Number | | | Sum | 1 | | | -36 | || | 1+(-36)=-35 | 2 | | | -18 | || | 2+(-18)=-16 | 3 | | | -12 | || | 3+(-12)=-9 | 4 | | | -9 | || | 4+(-9)=-5 | 6 | | | -6 | || | 6+(-6)=0 | -1 | | | 36 | || | (-1)+36=35 | -2 | | | 18 | || | (-2)+18=16 | -3 | | | 12 | || | (-3)+12=9 | -4 | | | 9 | || | (-4)+9=5 | -6 | | | 6 | || | (-6)+6=0 | We can see from the table that -6 and 6 add to 0.So the two numbers that multiply to -36 and add to 0 are: -6 and 6\r\n" );
document.write( " \r\n" );
document.write( " Now we substitute these numbers into a and b of the general equation of a product of linear factors which is:\r\n" );
document.write( " \r\n" );
document.write( " substitute a=-6 and b=6\r\n" );
document.write( " \r\n" );
document.write( " So the equation becomes:\r\n" );
document.write( " \r\n" );
document.write( " (x-6)(x+6)\r\n" );
document.write( " \r\n" );
document.write( " Notice that if we foil (x-6)(x+6) we get the quadratic again\n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "--------------------------------------------------------------------------------- \n" );
document.write( "Factor the first denominator\r \n" );
document.write( "\n" );
document.write( "\n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: Factoring Quadratics with a leading coefficient of 1 (a=1) | \n" );
document.write( "In order to factor , first we need to ask ourselves: What two numbers multiply to -4 and add to 0? Lets find out by listing all of the possible factors of -4 \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Factors: \n" );
document.write( " \n" );
document.write( " 1,2,4,4,6,9,12,18,36, \n" );
document.write( " \n" );
document.write( " -1,-2,-4,-4,-6,-9,-12,-18,-36,List the negative factors as well. This will allow us to find all possible combinations \n" );
document.write( " \n" );
document.write( " These factors pair up to multiply to -4. \n" );
document.write( " \n" );
document.write( " (-1)*(36)=-4 \n" );
document.write( " \n" );
document.write( " (-2)*(18)=-4 \n" );
document.write( " \n" );
document.write( " (-4)*(12)=-4 \n" );
document.write( " \n" );
document.write( " (-4)*(9)=-4 \n" );
document.write( " \n" );
document.write( " (-6)*(6)=-4 \n" );
document.write( " \n" );
document.write( " Now which of these pairs add to 0? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 0 \n" );
document.write( " \n" );
document.write( " First Number | | | Second Number | | | Sum | 1 | | | -36 | || | 1+(-36)=-35 | 2 | | | -18 | || | 2+(-18)=-16 | 4 | | | -12 | || | 4+(-12)=-8 | 4 | | | -9 | || | 4+(-9)=-5 | 6 | | | -6 | || | 6+(-6)=0 | -1 | | | 36 | || | (-1)+36=35 | -2 | | | 18 | || | (-2)+18=16 | -4 | | | 12 | || | (-4)+12=8 | -4 | | | 9 | || | (-4)+9=5 | -6 | | | 6 | || | (-6)+6=0 | We can see from the table that -6 and 6 add to 0.So the two numbers that multiply to -4 and add to 0 are: -6 and 6\r\n" );
document.write( " \r\n" );
document.write( " Now we substitute these numbers into a and b of the general equation of a product of linear factors which is:\r\n" );
document.write( " \r\n" );
document.write( " substitute a=-6 and b=6\r\n" );
document.write( " \r\n" );
document.write( " So the equation becomes:\r\n" );
document.write( " \r\n" );
document.write( " (x-6)(x+6)\r\n" );
document.write( " \r\n" );
document.write( " Notice that if we foil (x-6)(x+6) we get the quadratic again\n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "--------------------------------------------------------------------------------- \n" );
document.write( "Factor the second numerator\r \n" );
document.write( "\n" );
document.write( "\n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: Factoring Quadratics with a leading coefficient of 1 (a=1) | \n" );
document.write( "In order to factor , first we need to ask ourselves: What two numbers multiply to 8 and add to 6? Lets find out by listing all of the possible factors of 8 \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Factors: \n" );
document.write( " \n" );
document.write( " 1,2,4,8,6,9,12,18,36, \n" );
document.write( " \n" );
document.write( " -1,-2,-4,-8,-6,-9,-12,-18,-36,List the negative factors as well. This will allow us to find all possible combinations \n" );
document.write( " \n" );
document.write( " These factors pair up to multiply to 8. \n" );
document.write( " \n" );
document.write( " 1*36=8 \n" );
document.write( " \n" );
document.write( " 2*18=8 \n" );
document.write( " \n" );
document.write( " 4*12=8 \n" );
document.write( " \n" );
document.write( " 8*9=8 \n" );
document.write( " \n" );
document.write( " 6*6=8 \n" );
document.write( " \n" );
document.write( " (-1)*(-36)=8 \n" );
document.write( " \n" );
document.write( " (-2)*(-18)=8 \n" );
document.write( " \n" );
document.write( " (-4)*(-12)=8 \n" );
document.write( " \n" );
document.write( " (-8)*(-9)=8 \n" );
document.write( " \n" );
document.write( " (-6)*(-6)=8 \n" );
document.write( " \n" );
document.write( " note: remember two negative numbers multiplied together make a positive number \n" );
document.write( " \n" );
document.write( " Now which of these pairs add to 6? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to 6 \n" );
document.write( " \n" );
document.write( " First Number | | | Second Number | | | Sum | 1 | | | 36 | || | 1+36=37 | 2 | | | 18 | || | 2+18=20 | 4 | | | 12 | || | 4+12=16 | 8 | | | 9 | || | 8+9=17 | 6 | | | 6 | || | 6+6=12 | -1 | | | -36 | || | -1+(-36)=-37 | -2 | | | -18 | || | -2+(-18)=-20 | -4 | | | -12 | || | -4+(-12)=-16 | -8 | | | -9 | || | -8+(-9)=-17 | -6 | | | -6 | || | -6+(-6)=-12 | substitute a=-6 and b=6\r\n" );
document.write( " \r\n" );
document.write( " So the equation becomes:\r\n" );
document.write( " \r\n" );
document.write( " (x-6)(x+6)\r\n" );
document.write( " \r\n" );
document.write( " Notice that if we foil (x-6)(x+6) we get the quadratic again\r\n" );
document.write( " \r\n" );
document.write( " None of these factors add to 6. So this quadratic cannot be factored. In order to solve for x, we need to use the quadratic formula.\n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "--------------------------------------------------------------------------------- \n" );
document.write( "Factor the second denominator\r \n" );
document.write( "\n" );
document.write( "\n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: Factoring Quadratics with a leading coefficient of 1 (a=1) | \n" );
document.write( "In order to factor , first we need to ask ourselves: What two numbers multiply to -24 and add to -2? Lets find out by listing all of the possible factors of -24 \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Factors: \n" );
document.write( " \n" );
document.write( " 1,2,3,4,6,8,12,24,36, \n" );
document.write( " \n" );
document.write( " -1,-2,-3,-4,-6,-8,-12,-24,-36,List the negative factors as well. This will allow us to find all possible combinations \n" );
document.write( " \n" );
document.write( " These factors pair up to multiply to -24. \n" );
document.write( " \n" );
document.write( " (-1)*(36)=-24 \n" );
document.write( " \n" );
document.write( " (-2)*(24)=-24 \n" );
document.write( " \n" );
document.write( " (-3)*(12)=-24 \n" );
document.write( " \n" );
document.write( " (-4)*(8)=-24 \n" );
document.write( " \n" );
document.write( " (-6)*(6)=-24 \n" );
document.write( " \n" );
document.write( " Now which of these pairs add to -2? Lets make a table of all of the pairs of factors we multiplied and see which two numbers add to -2 \n" );
document.write( " \n" );
document.write( " First Number | | | Second Number | | | Sum | 1 | | | -36 | || | 1+(-36)=-35 | 2 | | | -24 | || | 2+(-24)=-22 | 3 | | | -12 | || | 3+(-12)=-9 | 4 | | | -8 | || | 4+(-8)=-4 | 6 | | | -6 | || | 6+(-6)=0 | -1 | | | 36 | || | (-1)+36=35 | -2 | | | 24 | || | (-2)+24=22 | -3 | | | 12 | || | (-3)+12=9 | -4 | | | 8 | || | (-4)+8=4 | -6 | | | 6 | || | (-6)+6=0 | substitute a=-6 and b=6\r\n" );
document.write( " \r\n" );
document.write( " So the equation becomes:\r\n" );
document.write( " \r\n" );
document.write( " (x-6)(x+6)\r\n" );
document.write( " \r\n" );
document.write( " Notice that if we foil (x-6)(x+6) we get the quadratic again\r\n" );
document.write( " \r\n" );
document.write( " None of these factors add to -2. So this quadratic cannot be factored. In order to solve for x, we need to use the quadratic formula.\n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So the whole expression becomes\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Cancel like terms\r \n" );
document.write( "\n" );
document.write( "So the whole expression reduces to \r \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "So the answer is A) \n" );
document.write( " \n" );
|
|
|
|