document.write( "Question 914765: 3n^2+7n+4 \n" ); document.write( "
Algebra.Com's Answer #555274 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"3n%5E2%2B7n%2B4\", we can see that the first coefficient is \"3\", the second coefficient is \"7\", and the last term is \"4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"3\" by the last term \"4\" to get \"%283%29%284%29=12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"12\" (the previous product) and add to the second coefficient \"7\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"12\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"12\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,12\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-12\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"12\".\r
\n" ); document.write( "\n" ); document.write( "1*12 = 12
\n" ); document.write( "2*6 = 12
\n" ); document.write( "3*4 = 12
\n" ); document.write( "(-1)*(-12) = 12
\n" ); document.write( "(-2)*(-6) = 12
\n" ); document.write( "(-3)*(-4) = 12\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"7\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1121+12=13
262+6=8
343+4=7
-1-12-1+(-12)=-13
-2-6-2+(-6)=-8
-3-4-3+(-4)=-7
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"3\" and \"4\" add to \"7\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"3\" and \"4\" both multiply to \"12\" and add to \"7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"7n\" with \"3n%2B4n\". Remember, \"3\" and \"4\" add to \"7\". So this shows us that \"3n%2B4n=7n\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3n%5E2%2Bhighlight%283n%2B4n%29%2B4\" Replace the second term \"7n\" with \"3n%2B4n\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283n%5E2%2B3n%29%2B%284n%2B4%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3n%28n%2B1%29%2B%284n%2B4%29\" Factor out the GCF \"3n\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3n%28n%2B1%29%2B4%28n%2B1%29\" Factor out \"4\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283n%2B4%29%28n%2B1%29\" Combine like terms. Or factor out the common term \"n%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3n%5E2%2B7n%2B4\" factors to \"%283n%2B4%29%28n%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"3n%5E2%2B7n%2B4=%283n%2B4%29%28n%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%283n%2B4%29%28n%2B1%29\" to get \"3n%5E2%2B7n%2B4\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let me know if you need more help or if you need me to explain a step in more detail.
\n" ); document.write( "Feel free to email me at jim_thompson5910@hotmail.com
\n" ); document.write( "or you can visit my website here: http://www.freewebs.com/jimthompson5910/home.html\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thanks,\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Jim
\n" ); document.write( "
\n" );