document.write( "Question 912071: A cylinder is inscribed in a cone with height 10 and a base of radius 5, as shown below on the link. Find the approximate values of r and h for which the volume of the cylinder is a maximum. Then give the approximate maximum volume. \r
\n" ); document.write( "\n" ); document.write( "http://postimg.org/image/tewn41qu7/\r
\n" ); document.write( "\n" ); document.write( "Thank you!!
\n" ); document.write( "

Algebra.Com's Answer #553770 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
There is a relationship between \"r\" and \"h\".
\n" ); document.write( "When \"r=5\", \"h=0\"
\n" ); document.write( "When \"r=0\", \"h=10\".
\n" ); document.write( "So then using the point-slope form of a line,
\n" ); document.write( "\"h-10=%28%2810-0%29%2F%280-5%29%29%28r-0%29\"
\n" ); document.write( "\"h-10=-2r\"
\n" ); document.write( "\"h=10-2r\"
\n" ); document.write( "So the volume of the cylinder is,
\n" ); document.write( "\"V=pi%2Ar%5E2%2Ah\"
\n" ); document.write( "\"V=pi%2Ar%5E2%2810-2r%29\"
\n" ); document.write( "To maximize the volume, take the derivative of the volume and set it equal to zero (use the chain rule).
\n" ); document.write( "\"dV%2Fdt=pi%2A%28r%5E2%28-2%29%2B%2810-2r%29%282r%29%29\"
\n" ); document.write( "\"dV%2Fdt=pi%2A%28-2r%5E2%2B%2820r-4r%5E2%29%29\"
\n" ); document.write( "\"dV%2Fdt=pi%2A%2820r-6r%5E2%29\"
\n" ); document.write( "\"dV%2Fdt=2pi%2Ar%2810-3r%29\"
\n" ); document.write( "So then,
\n" ); document.write( "\"10-3r=0\"
\n" ); document.write( "\"-3r=-10\"
\n" ); document.write( "\"r=10%2F3\"
\n" ); document.write( "Then,
\n" ); document.write( "\"h=10-2%2810%2F3%29\"
\n" ); document.write( "\"h=10-20%2F3\"
\n" ); document.write( "\"h=30%2F3-20%2F3\"
\n" ); document.write( "\"h=10%2F3\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "\"V%5Bmax%5D=pi%2A%2810%2F3%29%5E2%2A%2810%2F3%29\"
\n" ); document.write( "\"V%5Bmax%5D=%281000%2F27%29pi\"
\n" ); document.write( "
\n" ); document.write( "
\n" );