document.write( "Question 912071:  A cylinder is inscribed in a cone with height 10 and a base of radius 5, as shown below on the link. Find the approximate values of r and h for which the volume of the cylinder is a maximum. Then give the approximate maximum volume.  \r
\n" );
document.write( "\n" );
document.write( "http://postimg.org/image/tewn41qu7/\r
\n" );
document.write( "\n" );
document.write( "Thank you!! \n" );
document.write( "
| Algebra.Com's Answer #553770 by Fombitz(32388)     You can put this solution on YOUR website! There is a relationship between \n" ); document.write( "When \n" ); document.write( "When \n" ); document.write( "So then using the point-slope form of a line, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "So the volume of the cylinder is, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "To maximize the volume, take the derivative of the volume and set it equal to zero (use the chain rule). \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "So then, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Then, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |