document.write( "Question 908042: Factor the expressions:
\n" ); document.write( "-r^2+11r-18
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #550762 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"-r%5E2%2B11r-18\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-%28r%5E2-11r%2B18%29\" Factor out the GCF \"-1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"r%5E2-11r%2B18\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"r%5E2-11r%2B18\", we can see that the first coefficient is \"1\", the second coefficient is \"-11\", and the last term is \"18\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"18\" to get \"%281%29%2818%29=18\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"18\" (the previous product) and add to the second coefficient \"-11\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"18\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"18\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,9,18\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-9,-18\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"18\".\r
\n" ); document.write( "\n" ); document.write( "1*18 = 18
\n" ); document.write( "2*9 = 18
\n" ); document.write( "3*6 = 18
\n" ); document.write( "(-1)*(-18) = 18
\n" ); document.write( "(-2)*(-9) = 18
\n" ); document.write( "(-3)*(-6) = 18\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-11\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1181+18=19
292+9=11
363+6=9
-1-18-1+(-18)=-19
-2-9-2+(-9)=-11
-3-6-3+(-6)=-9
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-2\" and \"-9\" add to \"-11\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-2\" and \"-9\" both multiply to \"18\" and add to \"-11\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-11r\" with \"-2r-9r\". Remember, \"-2\" and \"-9\" add to \"-11\". So this shows us that \"-2r-9r=-11r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%5E2%2Bhighlight%28-2r-9r%29%2B18\" Replace the second term \"-11r\" with \"-2r-9r\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r%5E2-2r%29%2B%28-9r%2B18%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%28r-2%29%2B%28-9r%2B18%29\" Factor out the GCF \"r\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"r%28r-2%29-9%28r-2%29\" Factor out \"9\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28r-9%29%28r-2%29\" Combine like terms. Or factor out the common term \"r-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-1%28r%5E2-11r%2B18%29\" then factors further to \"-%28r-9%29%28r-2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-r%5E2%2B11r-18\" completely factors to \"-%28r-9%29%28r-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"-r%5E2%2B11r-18=-%28r-9%29%28r-2%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"-%28r-9%29%28r-2%29\" to get \"-r%5E2%2B11r-18\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );