document.write( "Question 906935: find the length of the tangent (-4,1) on the circle given by the equation x^2+y^2+8x+12y+5=0. \n" ); document.write( "
Algebra.Com's Answer #550102 by Alan3354(69443) You can put this solution on YOUR website! find the length of the tangent (-4,1) on the circle given by the equation x^2+y^2+8x+12y+5=0. \n" ); document.write( "---------------- \n" ); document.write( "Find the center of the circle. \n" ); document.write( "Put the equation is standard form. \n" ); document.write( "(x+4)^2 + (y+6)^2 = 47 \n" ); document.write( "--> center at (-4,-6) \n" ); document.write( "================== \n" ); document.write( "Move the circle and the point 6 units up and 4 units right. \n" ); document.write( "Now the circle is x^2 + y^2 = 47 and the point is (0,7) \n" ); document.write( "---- \n" ); document.write( "Find the tangent that passes thru (0,7) \n" ); document.write( "(x,y) is a point on the circle \n" ); document.write( "The slope of the tangent m1 = (y-7)/x \n" ); document.write( "The slope of the tangent at any point on the circle m2 = -x/y \n" ); document.write( "m1 = m2 \n" ); document.write( "(y-7)/x = -x/y \n" ); document.write( "-x^2 = y^2 - 7y \n" ); document.write( "x^2 + y^2 = 7y \n" ); document.write( "x^2 + y^2 = 47 \n" ); document.write( "7y = 47 \n" ); document.write( "y = 47/7 \n" ); document.write( "--------- \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "One tangent point is (sqrt(94)/7,(47/7)) \n" ); document.write( "----------- \n" ); document.write( "Find the distance between those 2 points. \n" ); document.write( " |