document.write( "Question 905066: hi can you help me figure this out ;Factor using the ac-method. \n" ); document.write( "
Algebra.Com's Answer #549022 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "\"108x%5E2%2B63xy%2B9y%5E2\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9%2812x%5E2%2B7xy%2By%5E2%29\" Factor out the GCF \"9\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"12x%5E2%2B7xy%2By%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"12x%5E2%2B7xy%2By%5E2\", we can see that the first coefficient is \"12\", the second coefficient is \"7\", and the last coefficient is \"1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"12\" by the last coefficient \"1\" to get \"%2812%29%281%29=12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"12\" (the previous product) and add to the second coefficient \"7\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"12\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"12\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,12\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-12\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"12\".\r
\n" ); document.write( "\n" ); document.write( "1*12 = 12
\n" ); document.write( "2*6 = 12
\n" ); document.write( "3*4 = 12
\n" ); document.write( "(-1)*(-12) = 12
\n" ); document.write( "(-2)*(-6) = 12
\n" ); document.write( "(-3)*(-4) = 12\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"7\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1121+12=13
262+6=8
343+4=7
-1-12-1+(-12)=-13
-2-6-2+(-6)=-8
-3-4-3+(-4)=-7
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"3\" and \"4\" add to \"7\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"3\" and \"4\" both multiply to \"12\" and add to \"7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"7xy\" with \"3xy%2B4xy\". Remember, \"3\" and \"4\" add to \"7\". So this shows us that \"3xy%2B4xy=7xy\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"12x%5E2%2Bhighlight%283xy%2B4xy%29%2By%5E2\" Replace the second term \"7xy\" with \"3xy%2B4xy\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2812x%5E2%2B3xy%29%2B%284xy%2By%5E2%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%284x%2By%29%2B%284xy%2By%5E2%29\" Factor out the GCF \"3x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%284x%2By%29%2By%284x%2By%29\" Factor out \"y\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x%2By%29%284x%2By%29\" Combine like terms. Or factor out the common term \"4x%2By\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9%2812x%5E2%2B7xy%2By%5E2%29\" then factors further to \"9%283x%2By%29%284x%2By%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"108x%5E2%2B63xy%2B9y%5E2\" completely factors to \"9%283x%2By%29%284x%2By%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"108x%5E2%2B63xy%2B9y%5E2=9%283x%2By%29%284x%2By%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"9%283x%2By%29%284x%2By%29\" to get \"108x%5E2%2B63xy%2B9y%5E2\".
\n" ); document.write( "
\n" ); document.write( "
\n" );