document.write( "Question 902633: A circle is inscribed in a right angle triangle. The circle touches the
\n" ); document.write( "hypotenuse, dividing it in the ratio 3:2. find the radius of the circle?
\n" ); document.write( "

Algebra.Com's Answer #547457 by Edwin McCravy(20059)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "No dimensions are given, only the 3:2 ratio, so I can only \r\n" );
document.write( "assume that the hypotenuse is 5 units long and is divided \r\n" );
document.write( "into two parts, one which is 3 units long and the other \r\n" );
document.write( "2 units long, like this drawing. Let the radius be R units\r\n" );
document.write( "long: \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So by the Pythagorean theorem:\r\n" );
document.write( "\r\n" );
document.write( "\"%283%2BR%29%5E2%2B%28R%2B2%29%5E2+=+%283%2B2%29%5E2\"\r\n" );
document.write( "\r\n" );
document.write( "\"9%2B6R%2BR%5E2%2BR%5E2%2B4R%2B4=5%5E2\"\r\n" );
document.write( "\r\n" );
document.write( "\"2R%5E2%2B10R%2B13=25\"\r\n" );
document.write( "\r\n" );
document.write( "\"2R%5E2%2B10R-12=0\"\r\n" );
document.write( "\r\n" );
document.write( "Divide through by 2:\r\n" );
document.write( "\r\n" );
document.write( "\"R%5E2%2B5R-6=0\"\r\n" );
document.write( "\r\n" );
document.write( "\"%28R%2B6%29%28R-1%29=0\"\r\n" );
document.write( "\r\n" );
document.write( "\"R%2B6=0\", \"R-1=0\"\r\n" );
document.write( "  \"R=-6\",  \"R=1\"\r\n" );
document.write( "\r\n" );
document.write( "We ignore the negative answer, and\r\n" );
document.write( "the radius is R = 1 unit long.\r\n" );
document.write( "\r\n" );
document.write( "Anything you don't understand you can ask \r\n" );
document.write( "me in the thank-you note below and I will \r\n" );
document.write( "get back to you.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );