document.write( "Question 898371: Given that log3 p = q , find q^(q+2) in terms of p . \n" ); document.write( "
Algebra.Com's Answer #544802 by Theo(13342)![]() ![]() You can put this solution on YOUR website! you are given that log3(p) = q.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "q^(q+2) should therefore be equal to log3(p)^(log3(p) + 2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "let's assume that q is equal to 2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "log3(p) = q if and only if 3^q = p\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since q = 2, then p must be equal to 9.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "log3(9) = 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this is true if and only if 3^2 = 9 which it is, so the statement is true.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "q^(q+2) is equivalent to log3(p) ^ (log3(p) + 2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since p is equal to 9, then q^(q+2) must be equal to log3(9) ^ ( log3(9) + 2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since log3(9) = 2, then we get log3(9)^(log3(9) + 2) = 2^(2+2) which is equal to 2^4.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "we also get q^(q+2) = 2^(2+2) = 2^4 as well.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "i think your answer is that:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "q^(q+2) in terms of p is equal to log3(p)^(log3(p) + 2)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |