document.write( "Question 894440: i) give a recursive definition of the set P of all positive integers greater than 0
\n" );
document.write( " II) formulate tha appropriate induction principle
\n" );
document.write( " III) use mathematical induction to prove that
\n" );
document.write( " 11+15+19 +... + (4n+7) = 2n^2 + 9n for all positive n>0 \n" );
document.write( "
Algebra.Com's Answer #542050 by jibirajeev(1)![]() ![]() ![]() You can put this solution on YOUR website! My definition p(n)=p(n-1)+1\r \n" ); document.write( "\n" ); document.write( "11+15+19..+(4n+7)+(4(n+1)+7)=2(n+1)^2+9(n+1) \n" ); document.write( " =2(n^2+2n+1)+9n+1 \n" ); document.write( " = 2n^2+9n + 4n+2+9 \n" ); document.write( " =2n^2+9n + 4n+11 \n" ); document.write( "Therefore works for the step up case \n" ); document.write( "= 4(n+1)+7=4n+11 \n" ); document.write( " |