document.write( "Question 892544: Determining an orthogonal basis for W = {(x, y, z); x - 2y + z = 0}. \n" ); document.write( "
Algebra.Com's Answer #540592 by Fombitz(32388)![]() ![]() You can put this solution on YOUR website! Choose any vector in W. \n" ); document.write( "Set \n" ); document.write( " \n" ); document.write( "If \n" ); document.write( "(0,1,2) \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "Now use the dot product to find a perpendicular vector to this vector. \n" ); document.write( " \n" ); document.write( "Let \n" ); document.write( "then \n" ); document.write( "Let \n" ); document.write( "(1,-2,1) \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ".\r \n" ); document.write( "\n" ); document.write( "Now take the cross product of those two vectors to find a mutually perpendicular vector to these two. \n" ); document.write( "(0,1,2)X(1,-2,1)=(5,2,-1) \n" ); document.write( "So then, \n" ); document.write( "(0,1,2), (1,-2,1), and (5,2,-1) form an orthogonal basis of W.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |