document.write( "Question 892087: Find the sum of
\n" );
document.write( "(1+2+3....+x) + (2+3+4....+x) + (3+4+5....+x) + ...................... till n terms where n
Algebra.Com's Answer #540308 by robertb(5830)![]() ![]() You can put this solution on YOUR website! Arrange the sums in this manner:\r \n" ); document.write( "\n" ); document.write( "1 + 2 + 3 + 4 + ... + n + (n+1) + ... + x \n" ); document.write( " 2 + 3 + 4 + ... + n + (n+1) + ... + x \n" ); document.write( " 3 + 4 + ... + n + (n+1) + ... + x \n" ); document.write( " 4 + ... + n + (n+1) + ... + x \n" ); document.write( " ... \n" ); document.write( " (n-1)+n + (n+1) + ... + x \n" ); document.write( " n + (n+1) + ... + x \n" ); document.write( " \n" ); document.write( "The triangular portion of the sums can be expressed as \n" ); document.write( "1 + 2*2 + 3*3 + 4*4 +... + (n-1)*(n-1) + n*n, or \n" ); document.write( " \n" ); document.write( "Now the sum (n+1)+...+x is added n times. Hence \n" ); document.write( "the sum \n" ); document.write( "\n" ); document.write( "Therefore, (1+2+3....+x) + (2+3+4....+x) + (3+4+5....+x) + .... till n terms where n < x, is \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |