document.write( "Question 890642: Verify the following identity by using an angle sum identity: cos (2x) = 1 – 2(sin2 x). Hint (2x = x + x) \n" ); document.write( "
Algebra.Com's Answer #539196 by Theo(13342)![]() ![]() You can put this solution on YOUR website! you want to prove the identity:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(2x) = 1 - 2sin^2(x).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your basic identity for cos(x + y) is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(x + y) = cos(x)cos(y) - sin(x)sin(y)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "let y = x, and this basic identity becomes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(x + x) = cos(x)cos(x) - sin(x)sin(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "simplify to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(2x) = cos^2(x) - sin^2(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "another basic identity is sin^2(x) + cos^2(x) = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "from this basic identity, we can solve for cos^2(x) to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos^(x) = 1 - sin^2(x).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "replace cos^2(x) with 1 - sin^2(x) in your equation of:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(2x) = cos^2(x) - sin^2(x) to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(2x) = 1 - sin^2(x) - sin^2(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "simplify this to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(2x) = 1 - 2sin^2(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since that is equal to your original equation, you are done.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |