document.write( "Question 889604: the values for x(3pi/2) and y(3pi/2) for x(t)=cos(t),y(t)=sin(t) are\r
\n" );
document.write( "\n" );
document.write( "A)(0,-1)
\n" );
document.write( "B)(.5, sqrt(3)/2)
\n" );
document.write( "C)(-.5,0)
\n" );
document.write( "D)(-.5,-sqrt(3)/2) \n" );
document.write( "
Algebra.Com's Answer #538321 by Theo(13342)![]() ![]() You can put this solution on YOUR website! i believe your solution is selection A which is (0,-1)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3pi/2 radians * 180 / pi = 3*180/2 degrees = 270 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(3pi/2) = cos(270) = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(3pi/2) = sin(270) = -1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the reference angle for 270 is equal to 270 - 180 if you assume quadrant 3, or 360 - 270 if you assume quadrant 4.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since 270 is on the border between quadrant 3 and quadrant 4, it can be assumed to be in either one, both of which get you the same answer.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "so the reference angle is 270 - 180 = 90, or the reference angle is 360 - 270 = 90.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the reference angle is 90 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the cosine of 90 degrees is 0 \n" ); document.write( "the cosine of 90 degrees is 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that would be in quadrant 1.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "in quadrant 3, the cosine is negative which doesn't matter since the cosine is 0.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "in quadrant 4, the cosine is positive which doesn't matter since the cosine is 0.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "in quadrant 3, the sine is negative.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "in quadrant 4, the sine is negative.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "either way, you have:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(270) = 0 \n" ); document.write( "sin(270) = -1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that's selection A.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you are dealing with functional notation.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x(t) = cos(t) \n" ); document.write( "y(t) = sin(t)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x(3pi/2) becomes cos(3pi/2) \n" ); document.write( "y(2pi/2) becomes sin(3pi/2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "in both cases, you replace t with 3pi/2.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |