document.write( "Question 889064: Given tan theta = 8/5 and pi < theta < 3pi/2. Find the exact value of sin theta/2, cos theta/2, tan theta/2. \n" ); document.write( "
Algebra.Com's Answer #538207 by Theo(13342)![]() ![]() You can put this solution on YOUR website! i'll use x instead of theta since it's easier to type.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your problem statement becomes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Given tan x = 8/5 and pi < x < 3pi/2. Find the exact value of sin x/2, cos x/2, tan x/2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "pi < x < 3pi/2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "in degrees, that means 180 < x < 270.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that puts x in the third quadrant.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "tan(x) in the third quadrant is positive, but x and y in the third quadrant are negative, so tan(x) in the third quadrant is equal to -8/-5.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the value of x in the first quadrant is arctan(8/5) = 57.99461679 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the value of x in the third quarter is 180 + 57.99461679 degrees which is equal to 237.99461679 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you can test if this angle is correct by taking the tangent of it.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you will get tan(x) = 1.6 which is equivalent to 8/5, or more correctly, -8/-5.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "half of 237.99461679 degrees is 118.9973084 degrees is equal to x/2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "118.9973084 degrees is in the second quadrant.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "use your calculator to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(x/2) = .8746424812... \n" ); document.write( "cos(x/2) = -.4847685324... \n" ); document.write( "tan(x/2) = -1.804247642...\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "if my assumptions are correct, these are the values we should get when we use the half angle formulas.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the hypotenuse of the triangle containing the reference angle of x is equal to sqrt(8^2+5^2) = sqrt(64+25) = sqrt(89)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "so our triangle has:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "an opposite side from angle x of -8 \n" ); document.write( "an adjacent side from angle x of -5 \n" ); document.write( "a hypotenuse of sqrt(89)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "we get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(x) = -8/sqrt(89) = -.847998304... \n" ); document.write( "cos(x) = -5/sqrt(89) = -.52999894... \n" ); document.write( "tan(x) = -8/-5 = 1.6\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the half angle identify formulas are:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(x/2) = +/- sqrt((1-cos(x))/2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(x/2) =+/- sqrt((1+cos(x))/2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "tan(x/2) = +/- sqrt((1-cos(x))/(1+cos(x)))\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "it's safe to say that, if x is in the third quadrant, than x/2 is in the second quadrant.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a quick test reveals this to be true.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "180/2 = 90 which is the lowest value that x/2 will take and is on the border between the first quadrant and the second quadrant.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "270/2 = 135 which is in the middle of the second quadrant.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "if x is in the third quadrant, x/2 has to be in the second quadrant.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "now the formula for sin(x/2) is equal to +/- sqrt((1-cos(x))/2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that becomes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(x/2) = +/- .8746424812...\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since sine is positive in the second quarter, then sin(x/2) = .8746424812.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this is the same as we got up above, so we are doing ok so far.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "now the formula for cos(x/2) is equal to +/- sqrt((1+cos(x))/2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that becomes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(x/2) = +/- .4847685324...\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since cosine is negative in the second quarter, then cos(x/2) = -.4847685324...\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since this is the same as we got earlier, this is ok as well.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "now the formula for tan(x/2) is equal to +/- sqrt((1-cos(x))/(1+cos(x))).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since tan is negative in the second quarter, we'll be looking for - sqrt... and not plus.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that becomes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "tan(x/2) = -1.804247642...\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "once again, this agrees with what we got above, so the assumption is that we did this correctly.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your solutions are:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(x/2) = .8746424812... \n" ); document.write( "cos(x/2) = -.4847685324... \n" ); document.write( "tan(x/2) = -1.804247642...\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |