document.write( "Question 888586: A farmer wants to fence in three sides of a rectangular field with 1000 feet of fencing. The other side of the rectangle is a river. If the enclosed area is to be maximum, find the dimensions of the field.\r
\n" ); document.write( "\n" ); document.write( "Now I was able to get the area, if I am right, I think the area is 125,000 feet. How do I get the dimensions?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #537483 by Theo(13342)\"\" \"About 
You can put this solution on YOUR website!
L = length
\n" ); document.write( "W = width
\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "Perimeter is normally equal to 2L + 2W, but you are missing 1 side.
\n" ); document.write( "We'll assume it's the length.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since you have 1000 feet of fencing, then L + 2W = 1000\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "solve for L to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "L = 1000 - 2W\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "area is equal to L*W\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "replace L with 1000 - 2W to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "area = (1000 - 2W) * W\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "simplify this to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "area = 1000W - 2W^2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "this is a quadratic equation, so convert it to standard form to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "area = -2W^2 + 1000W\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "replace W with x to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "area = -2x^2 + 1000x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since it's in standard form of y = ax^2 + bx + c:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "a = -2
\n" ); document.write( "b = 1000
\n" ); document.write( "c = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since the coefficient of the x^2 term is negative, this will have a maximum.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the maximum point will be at x = -b/(2a) = -1000 / -4 = 250.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the equation will be at a maximum when x = 250\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "when x = 250, -2x^2 + 1000x = -2(250)^2 + 1000(250) = 125000.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since x represents W which represents the width, then W = 250.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since area is L * W, then L * 250 = 125000.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "solve for L to get L = 125000 / 250 = 500\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the length is 500 and the width is 250.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the area is 500 * 250 = 125000\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the perimeter for fencing is L + 2W = 500 + 2(250) = 500 + 500 = 1000\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "all is good.
\n" ); document.write( "
\n" ); document.write( "
\n" );