To prove:\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "By Cauchy's inequality, the arithmetic mean of any number of \r\n" );
document.write( "positive numbers is greater than or equal to the geometric mean.\r\n" );
document.write( "\r\n" );
document.write( "Let's take two of the cubes to be the same.\r\n" );
document.write( "The arithmetic mean of
,
, and
is greater\r\n" );
document.write( "than or equal to the geometric mean of those cubes, two of which are the same.\r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "

\r\n" );
document.write( "

\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "By symmetry we can also prove that\r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "

\r\n" );
document.write( "

\r\n" );
document.write( "

\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "Add all 6 inequalities:\r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "Divide through by 3\r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "Factor out 2 on the left.\r\n" );
document.write( "Rearrange the terms on the right so we can factor \r\n" );
document.write( "pairwise and get the given desired right side: \r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "On the right, factor the 1st two, middle two and last two terms:\r\n" );
document.write( "\r\n" );
document.write( "

\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "