document.write( "Question 886287: 2e^(x+3) = π^x \n" ); document.write( "
Algebra.Com's Answer #535883 by Theo(13342)\"\" \"About 
You can put this solution on YOUR website!
2*e^(x+3) = pi^x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "divide both sides of this equation by 2 to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "e^(x+3) = pi^x/2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "take natural log of both sides of this equation to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ln(e^(x+3) = ln(pi^x/2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since log(a^b) = b*log(a) and log(a*b) = log(a) + log(b), your equation becomes:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(x+3)*ln(e) = ln(pi^x) = ln(2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "since ln(e) = 1 and log(a^b) = b*log(a), your equation becomes:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(x+3) = x * ln(pi) - ln(2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "add ln(2) to both sides of this equation and subtract (x+3) from both sides of this equation to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ln(2) = x * ln(pi) - (x+3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "simplify this to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ln(2) = x*ln(pi) - x - 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "factor out the x to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ln(2) = x * (ln(pi) - 1) - 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "add 3 to both sides of the equation to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ln(2) + 3 = x * (ln(pi) - 1)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "divide both sides of the equation by (ln(pi) - 1) to get:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(ln(2) + 3) / (ln(pi) - 1) = x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "that's your solution.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "to confirm the solution is correct, replace x in your original equation with the value of x in the solution to see if the equation holds true.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "decimal equivalent of x = 25.51751602\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "after replacing x with 25.51751602, I got:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2*e^(x+3) = pi^x becomes:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "4.853218453 * 10^12 = 4.853218453 * 10^12\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "this confirms the solution is correct.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );