document.write( "Question 886288: log_2((x^2)+ 1)−log_4(x^2) = 1 \n" ); document.write( "
Algebra.Com's Answer #535882 by Theo(13342)![]() ![]() You can put this solution on YOUR website! i get x = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "start with log2(x^2 + 1) - log4(x^2) = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "take log4(x^2) and set it equal to y \n" ); document.write( "you get log4(x^2) = y if and only if 4^y = x^2 \n" ); document.write( "4^y is equivalent to 2^(2y) and you get: \n" ); document.write( "2^(2y) = x^2 \n" ); document.write( "you get 2^(2y) = x^2 if and only if log2(x^2) = 2y\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "solve for y and you get: \n" ); document.write( "y = log2^(x^2) / 2 \n" ); document.write( "since log4^(x^2) is also equal to y, you get: \n" ); document.write( "log2^(x^2) / 2 = log4(x^2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "replace log4(x^2) with log2(x^2)/2 in your original equation and you get: \n" ); document.write( "log2(x^2 + 1) - log2(x^2)/2 = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "multiply both sides of this equation by 2 to get: \n" ); document.write( "2*log2(x^2 + 1) - log2(x^2) = 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since 2*log2(x^2 + 1) is equivalent to log2((x^2+1)^2), then your equation becomes log2((x^2+1)^2) - log2(x^2) = 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since log(a) - log(b) = log(a/b), your equation becomes: \n" ); document.write( "log2(((x^2+1)^2)/x^2) = 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this is true if and only if 2^2 = ((x^2+1)^2/x^2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "simplify this and you will get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4 = (x^4 + 2x^2 + 1) / x^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "multiply both sides of this equation by x^2 and you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4x^2 = x^4 + 2x^2 + 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "subtract 4x^2 from both sides of this equation and you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^4 - 2x^2 + 1 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "let y = x^2 and the equation becomes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "y^2 - 2y + 1 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "factor this equation and you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(y-1)^2 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "solve for y and you get y = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since y = x^2, then you get x^2 = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "solve for x and you get x = +/- sqrt(1) which becomes x = +/- 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "these should be your solutions.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "plug them into your original equation to see if they're good.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your original equation is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "log2(x^2 + 1) - log4(x^2) = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "log2(1^2 + 1) = log2(2) = 1 \n" ); document.write( "log2((-1)^2 + 1) = log2(2) = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "log4(1^2) = log4(1) = 0 \n" ); document.write( "log4((-1)^2) = log4(1) = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your original equation of log2(x^2 + 1) - log4(x^2) = 1 becomes 1 - 0 = 1 which is true.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your solutions are x = 1 and x = -1\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |