document.write( "Question 886331: When finding a confidence interval to estimate a population's proportion if the point estimate is 0.420 and the critical value is 1.96 and sample size is 50 then the margin of error (or \"maximum\")is: \n" ); document.write( "
Algebra.Com's Answer #535873 by Theo(13342)![]() ![]() You can put this solution on YOUR website! as best i can determine, your answer will be as follows:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "p = probability of success \n" ); document.write( "q = probability of failure \n" ); document.write( "n = sample size \n" ); document.write( "sep = standard error of a proportion \n" ); document.write( "czf = critical z factor \n" ); document.write( "moe = margin of error \n" ); document.write( "ci = confidence interval\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "p = .420 \n" ); document.write( "q = 1 - p = .580 \n" ); document.write( "n = 50 \n" ); document.write( "sep = sqrt (p*q/n) = sqrt(.004872) = .0698 \n" ); document.write( "czf = 1.96 \n" ); document.write( "moe = czf * se = 1.96 * .0698 = .1368 \n" ); document.write( "ci = p +/- moe = .420 +/- .1368 = .2832 to .5568\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |