document.write( "Question 74478: The lines described by 3x-y=17, 2x+5y=17, x+2y=a+b, and x-y=3b-5a all pass through the same point. What is the ratio of a to b? \n" ); document.write( "
Algebra.Com's Answer #53467 by scott8148(6628) You can put this solution on YOUR website! At that point, the x and y values are the same in all the equations. Using the first two equations, you can find values for x and y; and then use those values in the third and fourth equations to find a and b.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "From first equation: \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Substituting into second equation: \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " so \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Using third equation: \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Substituting into fourth equation: \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " so \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The ratio of a to b is 19:45 \n" ); document.write( " |