document.write( "Question 884543: If N=2^1500 what is the remainder when N is divided by 13?
\n" ); document.write( "A) 1
\n" ); document.write( "B) 2
\n" ); document.write( "C) 4
\n" ); document.write( "D) 12
\n" ); document.write( "

Algebra.Com's Answer #534469 by Edwin McCravy(20056)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "We use the theorem\r\n" );
document.write( "\r\n" );
document.write( "2n(p-1) ≡ 1 (mod p)  where p is prime\r\n" );
document.write( "\r\n" );
document.write( "21500 mod 13 = 2125*12 = 2125(13-1)\r\n" );
document.write( "\r\n" );
document.write( "Using the theorem with n=125, p = 13,\r\n" );
document.write( "\r\n" );
document.write( "Answer: 1\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );