document.write( "Question 883926: What is the remainder when 23^294 is divided by 5?
\n" );
document.write( "(A) 0
\n" );
document.write( "(B) 1
\n" );
document.write( "(C) 2
\n" );
document.write( "(D) 3
\n" );
document.write( "(E) 4 \n" );
document.write( "
Algebra.Com's Answer #533856 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Focus only on the last units digit of 23\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3 ---> 3^2 = 9\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "9*3 = 27\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now only focus on the 7 and multiply by 3: 7*3 = 21\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now only focus on the 1 and multiply by 3: 1*3 = 3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We have this pattern of the digits: 3, 9, 7, 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "and it repeats over and over\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It repeats every 4 times. So because 294/4 = 73 remainder 2, this means that the last digit of 23^294 is 9\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "9/5 = 1 remainder 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So the remainder is 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |