document.write( "Question 883011: Determine the equation of g(x) that results from translating the function f(x) = (x + 2)^2 to the right 6 units.\r
\n" ); document.write( "\n" ); document.write( "a. g(x) = (x - 4)^2
\n" ); document.write( "b. g(x) = (x + 8)^2
\n" ); document.write( "c. g(x) = (x + 2)^2 - 6
\n" ); document.write( "d. g(x) = (x + 2)^2 + 6
\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #533237 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If you write the given function in vertex form, i.e. , you can determine the coordinates of the given function's vertex\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "so the vertex of the given function is \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If you move 6 units to the right, then you need to add 6 to the -coordinate of the original vertex to find the -coordinate of the translated function vertex. Since you are only translating 6 units right, and there is no mention of any vertical translation, the -coordinate of the vertex remains the same for the given translation. Hence, the vertex of the translated function is .\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Pick the answer that indicates this new vertex.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "
\"The

\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );