document.write( "Question 882098: 9x² + 49x + 20
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #532688 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'm assuming you want to factor.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"9x%5E2%2B49x%2B20\", we can see that the first coefficient is \"9\", the second coefficient is \"49\", and the last term is \"20\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"9\" by the last term \"20\" to get \"%289%29%2820%29=180\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"180\" (the previous product) and add to the second coefficient \"49\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"180\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"180\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-9,-10,-12,-15,-18,-20,-30,-36,-45,-60,-90,-180\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"180\".\r
\n" ); document.write( "\n" ); document.write( "1*180 = 180
\n" ); document.write( "2*90 = 180
\n" ); document.write( "3*60 = 180
\n" ); document.write( "4*45 = 180
\n" ); document.write( "5*36 = 180
\n" ); document.write( "6*30 = 180
\n" ); document.write( "9*20 = 180
\n" ); document.write( "10*18 = 180
\n" ); document.write( "12*15 = 180
\n" ); document.write( "(-1)*(-180) = 180
\n" ); document.write( "(-2)*(-90) = 180
\n" ); document.write( "(-3)*(-60) = 180
\n" ); document.write( "(-4)*(-45) = 180
\n" ); document.write( "(-5)*(-36) = 180
\n" ); document.write( "(-6)*(-30) = 180
\n" ); document.write( "(-9)*(-20) = 180
\n" ); document.write( "(-10)*(-18) = 180
\n" ); document.write( "(-12)*(-15) = 180\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"49\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
11801+180=181
2902+90=92
3603+60=63
4454+45=49
5365+36=41
6306+30=36
9209+20=29
101810+18=28
121512+15=27
-1-180-1+(-180)=-181
-2-90-2+(-90)=-92
-3-60-3+(-60)=-63
-4-45-4+(-45)=-49
-5-36-5+(-36)=-41
-6-30-6+(-30)=-36
-9-20-9+(-20)=-29
-10-18-10+(-18)=-28
-12-15-12+(-15)=-27
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"4\" and \"45\" add to \"49\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"4\" and \"45\" both multiply to \"180\" and add to \"49\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"49x\" with \"4x%2B45x\". Remember, \"4\" and \"45\" add to \"49\". So this shows us that \"4x%2B45x=49x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"9x%5E2%2Bhighlight%284x%2B45x%29%2B20\" Replace the second term \"49x\" with \"4x%2B45x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%289x%5E2%2B4x%29%2B%2845x%2B20%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%289x%2B4%29%2B%2845x%2B20%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%289x%2B4%29%2B5%289x%2B4%29\" Factor out \"5\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B5%29%289x%2B4%29\" Combine like terms. Or factor out the common term \"9x%2B4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"9x%5E2%2B49x%2B20\" factors to \"%28x%2B5%29%289x%2B4%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"9x%5E2%2B49x%2B20=%28x%2B5%29%289x%2B4%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28x%2B5%29%289x%2B4%29\" to get \"9x%5E2%2B49x%2B20\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );