document.write( "Question 881537: Show that log5 xy = 2 log25 x + 2 log25 y. Hence or otherwise, find the values of x and y which satisfy the equations log5 xy = 10 and (log25 y/log25 x) 3/2 \n" ); document.write( "
Algebra.Com's Answer #532291 by Theo(13342) You can put this solution on YOUR website! you want to prove:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Log5(xy) = 2Log25(x) + 2Log25(y)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2Log25(x) is equal to Log25(x^2) \n" ); document.write( "2Log25(y) is equal to Log25(y^2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Log25(x^2) + Log25(y^2) is equal to Log25(x^2 * y^2) which is equal to Log25((xy)^2).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Your original equation becomes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Log5(xy) = Log25((xy)^2)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "set Log5(xy) equal to a. \n" ); document.write( "set Log25((xy)^2) equal to b.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Log5(xy) = a \n" ); document.write( "Log25((xy)^2) = b\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If we can prove that a = b, then that proves that Log5(xy) = Log25((xy)^2) which proves the original equation is true.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The basic definition of logs states that:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Log5(xy) = a if and only if 5^a = xy\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Likewise, the basic definition of logs states that:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Log25((xy)^2) = b if and only if 25^b = (xy)^2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "25^b is the same as (5^2)^b which makes this last equation equivalent to:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(5^2)^b = (xy)^2 which can also be expressed as:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "5^(2b) = (xy)^2 which can also be expressed as:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(5^b)^2 = (xy)^2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(5^b)^2 can only be equal to (xy)^2 if 5^b = xy.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you can prove this by just taking the square root of both sides of the equation and you will get 5^b = xy.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "we now have:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "5^a = xy \n" ); document.write( "5^b = xy\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This can only be true if a = b.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since we have proven that a = b, we have also proven that Log5(xy) is equal to Log25((xy)^2) which proves the original equation is true.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |