document.write( "Question 881139: I need to identify the focus, vertex, directrix, and graph x=-2y^2+4y-3 \n" ); document.write( "
Algebra.Com's Answer #531993 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
identify the focus, vertex, directrix, and graph
\n" ); document.write( "x=-2y^2+4y-3
\n" ); document.write( "complete the square:
\n" ); document.write( "x=-2(y^2-2y+1)+2-3
\n" ); document.write( "x=-2(y-1)^2-1
\n" ); document.write( "(x+1)=-2(y-1)^2
\n" ); document.write( "(y-1)^2=-(1/2)(x+1)
\n" ); document.write( "This is an equation of a parabola that opens leftward.
\n" ); document.write( "Its basic form of equation: (y-k)^2=-4p(x-h), (h,k)=coordinates of the vertex
\n" ); document.write( "vertex:(-1,1)
\n" ); document.write( "4p=1/2
\n" ); document.write( "p=1/8
\n" ); document.write( "focus: (-9/8,1)
\n" ); document.write( "directrix: x=-7/8
\n" ); document.write( "..
\n" ); document.write( "see graph below:
\n" ); document.write( "y=±(-(x+1)/2)^.5+1
\n" ); document.write( "
\n" ); document.write( "
\n" );