document.write( "Question 880836: Find the equation of the normal to y=(2x-1)(3x+5) at the point (1,8). Give your answer in the form ax+by+c=0,where a,b and c are integers \n" ); document.write( "
Algebra.Com's Answer #531922 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
Find the derivative of the function at that point.
\n" ); document.write( "The value of the derivative is the slope of the tangent line at that point.
\n" ); document.write( "Tangent and normal lines are perpendicular to each other.
\n" ); document.write( "Determine the slope of the normal line from the tangent line slope.
\n" ); document.write( "Use the point slope form to determine the equation of the normal line.
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "\"y=%282x-1%29%283x%2B5%29\"
\n" ); document.write( "\"y=6x%5E2%2B7x-5\"
\n" ); document.write( "\"dy%2Fdx=12x%2B7\"
\n" ); document.write( "At \"x=1\",
\n" ); document.write( "\"m%5BT%5D=dy%2Fdx=12%281%29%2B7\"
\n" ); document.write( "\"m%5BT%5D=19\"
\n" ); document.write( "Perpendicular lines have slopes that are negative reciprocals,
\n" ); document.write( "\"m%5BT%5D%2Am%5BN%5D=-1\"
\n" ); document.write( "\"19%2Am%5BN%5D=-1\"
\n" ); document.write( "\"m%5BN%5D=-1%2F19\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "When \"x=1\", \"y=%282-1%29%283%2B5%29=8\"
\n" ); document.write( "\"y-8=-%281%2F19%29%28x-1%29\"
\n" ); document.write( "\"y-8=-%281%2F19%29x%2B1%2F19\"
\n" ); document.write( "\"y-8=-%281%2F19%29x%2B1%2F19\"
\n" ); document.write( "\"y=-%281%2F19%29x%2B1%2F19%2B152%2F19\"
\n" ); document.write( "\"y=-%281%2F19%29x%2B153%2F19\"
\n" ); document.write( "\"19y=-x%2B153\"
\n" ); document.write( "\"x%2B19y-153=0\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "
\n" ); document.write( "
\n" );