document.write( "Question 880974: \"Completely factor each polynomial. If the polynomial cannot be factored, state so.\"\r
\n" ); document.write( "\n" ); document.write( "25y^3-10y^2+y\r
\n" ); document.write( "\n" ); document.write( "y(25y^2-10y+1)\r
\n" ); document.write( "\n" ); document.write( "I know this is a perfect square polynomial, but I'm not sure what to do after this. Thanks!!!
\n" ); document.write( "

Algebra.Com's Answer #531828 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Let's factor \"25y%5E2-10y%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"25y%5E2-10y%2B1\", we can see that the first coefficient is \"25\", the second coefficient is \"-10\", and the last term is \"1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"25\" by the last term \"1\" to get \"%2825%29%281%29=25\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"25\" (the previous product) and add to the second coefficient \"-10\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"25\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"25\":\r
\n" ); document.write( "\n" ); document.write( "1,5,25\r
\n" ); document.write( "\n" ); document.write( "-1,-5,-25\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"25\".\r
\n" ); document.write( "\n" ); document.write( "1*25 = 25
\n" ); document.write( "5*5 = 25
\n" ); document.write( "(-1)*(-25) = 25
\n" ); document.write( "(-5)*(-5) = 25\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-10\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1251+25=26
555+5=10
-1-25-1+(-25)=-26
-5-5-5+(-5)=-10
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-5\" and \"-5\" add to \"-10\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-5\" and \"-5\" both multiply to \"25\" and add to \"-10\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-10y\" with \"-5y-5y\". Remember, \"-5\" and \"-5\" add to \"-10\". So this shows us that \"-5y-5y=-10y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"25y%5E2%2Bhighlight%28-5y-5y%29%2B1\" Replace the second term \"-10y\" with \"-5y-5y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2825y%5E2-5y%29%2B%28-5y%2B1%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5y%285y-1%29%2B%28-5y%2B1%29\" Factor out the GCF \"5y\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5y%285y-1%29-1%285y-1%29\" Factor out \"1\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285y-1%29%285y-1%29\" Combine like terms. Or factor out the common term \"5y-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285y-1%29%5E2\" Condense the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"25y%5E2-10y%2B1\" factors to \"%285y-1%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"25y%5E2-10y%2B1=%285y-1%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%285y-1%29%5E2\" to get \"25y%5E2-10y%2B1\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "----------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"y%2825y%5E2-10y%2B1%29+\" turns into \"y%285y-1%29%5E2+\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "==========================================================================================================
\n" ); document.write( "==========================================================================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Final Answer: \"25y%5E3-10y%5E2%2By+\" completely factors to \"y%285y-1%29%5E2\"
\n" ); document.write( "
\n" );