document.write( "Question 880671: can you please help me factor this 2a^2-8b^2+16b-8
\n" );
document.write( "I get the following
\n" );
document.write( "2(a^2-4b^2+8b-4)
\n" );
document.write( "2[-a^2(4b^2-8b+4)]
\n" );
document.write( "2[-a^2(2b+2)^2]
\n" );
document.write( "then the book gives the following answer
\n" );
document.write( "but I am unable to \"see\" how the signs translate in the answer
\n" );
document.write( "2(a+2b-2)(a-2b+2) \n" );
document.write( "
Algebra.Com's Answer #531609 by KojackDavis(3)![]() ![]() You can put this solution on YOUR website! 2(a2)+2(−4b2)+2(8b)+2(−4)\r \n" ); document.write( "\n" ); document.write( "Factor out the GCF of 2 from 2a2−8b2+16b−8.\r \n" ); document.write( "\n" ); document.write( "2(a2−4b2+8b−4)\r \n" ); document.write( "\n" ); document.write( "Since both terms are perfect square roots, find the values a=a and b=2(b−1).\r \n" ); document.write( "\n" ); document.write( "2((a)2−(2(b−1))2)\r \n" ); document.write( "\n" ); document.write( "The binomial can be factored using the difference of squares formula, because both terms are perfect squares. The difference of squares formula is a2−b2=(a−b)(a+b) where a=a and b=2(b−1).\r \n" ); document.write( "\n" ); document.write( "2(a−2(b−1))(a+2(b−1))\r \n" ); document.write( "\n" ); document.write( "Simplify inside each of the factors. \r \n" ); document.write( "\n" ); document.write( "ANSWER: 2(a+2−2b)(a+2b−2) \n" ); document.write( " |