document.write( "Question 878516: how do you foil 7x^2+16x-15
\n" ); document.write( "and why
\n" ); document.write( "

Algebra.Com's Answer #530026 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"7x%5E2%2B16x-15\", we can see that the first coefficient is \"7\", the second coefficient is \"16\", and the last term is \"-15\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"7\" by the last term \"-15\" to get \"%287%29%28-15%29=-105\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-105\" (the previous product) and add to the second coefficient \"16\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-105\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-105\":\r
\n" ); document.write( "\n" ); document.write( "1,3,5,7,15,21,35,105\r
\n" ); document.write( "\n" ); document.write( "-1,-3,-5,-7,-15,-21,-35,-105\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-105\".\r
\n" ); document.write( "\n" ); document.write( "1*(-105) = -105
\n" ); document.write( "3*(-35) = -105
\n" ); document.write( "5*(-21) = -105
\n" ); document.write( "7*(-15) = -105
\n" ); document.write( "(-1)*(105) = -105
\n" ); document.write( "(-3)*(35) = -105
\n" ); document.write( "(-5)*(21) = -105
\n" ); document.write( "(-7)*(15) = -105\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"16\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-1051+(-105)=-104
3-353+(-35)=-32
5-215+(-21)=-16
7-157+(-15)=-8
-1105-1+105=104
-335-3+35=32
-521-5+21=16
-715-7+15=8
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-5\" and \"21\" add to \"16\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-5\" and \"21\" both multiply to \"-105\" and add to \"16\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"16x\" with \"-5x%2B21x\". Remember, \"-5\" and \"21\" add to \"16\". So this shows us that \"-5x%2B21x=16x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"7x%5E2%2Bhighlight%28-5x%2B21x%29-15\" Replace the second term \"16x\" with \"-5x%2B21x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%287x%5E2-5x%29%2B%2821x-15%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%287x-5%29%2B%2821x-15%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%287x-5%29%2B3%287x-5%29\" Factor out \"3\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B3%29%287x-5%29\" Combine like terms. Or factor out the common term \"7x-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"7x%5E2%2B16x-15\" factors to \"%28x%2B3%29%287x-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"7x%5E2%2B16x-15=%28x%2B3%29%287x-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28x%2B3%29%287x-5%29\" to get \"7x%5E2%2B16x-15\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );