document.write( "Question 878130: name direction vertex Axis of symmetry focus diectrix of the parabola\r
\n" ); document.write( "\n" ); document.write( "x-1=1/4(y-8)^2\r
\n" ); document.write( "\n" ); document.write( "please help
\n" ); document.write( "

Algebra.Com's Answer #529729 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
name direction vertex, Axis of symmetry, focus, directrix of the parabola
\n" ); document.write( "x-1=1/4(y-8)^2
\n" ); document.write( "(y-8)^2=4(x-1)
\n" ); document.write( "This is an equation of a parabola that opens rightward.
\n" ); document.write( "Its basic form: (y-k)^2=4p(x-k), (h,k)=coordinates of the vertex
\n" ); document.write( "For given parabola:
\n" ); document.write( "vertex: (1,8)
\n" ); document.write( "axis of symmetry: y=8
\n" ); document.write( "4p=4
\n" ); document.write( "p=1
\n" ); document.write( "focus(2,8)
\n" ); document.write( "directrix: x=0, or y-axis
\n" ); document.write( "see graph below:
\n" ); document.write( "y=±(4x-4)^.5+8
\n" ); document.write( "
\n" ); document.write( "
\n" );